The Wreath Product of Atoms of the Lattice of Semigroup Varieties
نویسنده
چکیده
A semigroup variety is called a Cross variety if it is finitely based, is generated by a finite semigroup, and has a finite lattice of subvarieties. It is established in which cases the wreath product of two semigroup varieties each of which is an atom of the lattice of semigroup varieties is a Cross variety. Furthermore, for all the pairs of atoms U and V for which this is possible, either a finite basis of identities for the wreath product UwV is given explicitly, a finite semigroup generating this variety is found and the lattice of subvarieties is described, or it is proved that such a finite characterization is impossible. 1. Statement of the problem and formulation of the main results This paper is devoted to a systematic study of the wreath products of atoms of the lattice of semigroup varieties. We consider three classical conditions for varieties to be finite: having a finite basis of identities, being generated by a finite semigroup, and having a finite lattice of subvarieties. For all the pairs of atoms U and V for which this is possible, a finite basis of identities for the wreath productUwV is given explicitly, a finite semigroup generating this variety is found and the lattice of subvarieties is described. Definition 1.1. A semigroup variety is called a Cross variety if it is finitely based, is generated by a finite semigroup and has a finite lattice of subvarieties. The atoms of the lattice L of all semigroup varieties are well known [16]. These are precisely the varietiesN2 of all semigroups with zero multiplication, Sl of all semilattices, L1 of all semigroups of left zeros, R1 of all semigroups of right zeros andAp of all Abelian groups of prime exponent p. The main result of the paper can be stated as follows. Theorem 1.2. If U and V are atoms of the lattice of semigroup varieties, then the wreath product UwV is a Cross variety, except in the following cases: 1) U = V = Ap; here the variety ApwAp = Ap is finitely based but is not generated by a finite semigroup and has an infinite lattice of subvarieties; 2) U = V = Sl and U = Sl,V = R1; here each of the varieties SlwSl = Sl and SlwR1 is finitely based, is generated by a finite semigroup and has an infinite lattice of subvarieties; 3) U = Sl,V = Ap; here the variety SlwAp is essentially infinitely based, is generated by a finite semigroup and has an infinite lattice of subvarieties. As a by-product, it becomes possible to estimate how big the difference is between the monoid wreath product and the lattice join of two semigroup varieties in the case where the varieties involved in the wreath product are atoms in the lattice of semigroup 2000 Mathematics Subject Classification. Primary 20M07; Secondary 20E22.
منابع مشابه
THE LATTICE OF CONGRUENCES ON A TERNARY SEMIGROUP
In this paper we investigate some properties of congruences on ternary semigroups. We also define the notion of congruence on a ternary semigroup generated by a relation and we determine the method of obtaining a congruence on a ternary semigroup T from a relation R on T. Furthermore we study the lattice of congruences on a ternary semigroup and we show that this lattice is not generally modular...
متن کاملRestricted cascade and wreath products of fuzzy finite switchboard state machines
A finite switchboard state machine is a specialized finite state machine. It is built by binding the concepts of switching state machines and commutative state machines. The main purpose of this paper is to give a specific algorithm for fuzzy finite switchboard state machine and also, investigates the concepts of switching relation, covering, restricted cascade products and wreath products of f...
متن کاملWreath Product Decompositions for Triangular Matrix Semigroups
We consider wreath product decompositions for semigroups of triangular matrices. We exhibit an explicit wreath product decomposition for the semigroup of all n× n upper triangular matrices over a given field k, in terms of aperiodic semigroups and affine groups over k. In the case that k is finite this decomposition is optimal, in the sense that the number of group terms is equal to the group c...
متن کاملAutomaton semigroup constructions
The aim of this paper is to investigate whether the class of automaton semigroups is closed under certain semigroup constructions. We prove that the free product of two automaton semigroups that contain left identities is again an automaton semigroup. We also show that the class of automaton semigroups is closed under the combined operation of ‘free product followed by adjoining an identity’. W...
متن کاملA Semigroup Approach to Wreath-Product Extensions of Solomon's Descent Algebras
There is a well-known combinatorial definition, based on ordered set partitions, of the semigroup of faces of the braid arrangement. We generalize this definition to obtain a semigroup ΣGn associated with G ≀ Sn, the wreath product of the symmetric group Sn with an arbitrary group G. Techniques of Bidigare and Brown are adapted to construct an anti-homomorphism from the Sn-invariant subalgebra ...
متن کامل